关于GDP与其他经济因素关系的计量分析
GDP是指本国在一年内所生产创造的劳动产品及劳务的总价值。GDP 的增长对于一个国家有着十分重要的意义。他是衡量一国在过去的一年里所创造的劳动成果的重要指标,而研究它的影响因素不仅可以很好的了解GDP的经济内涵,而且还有利于我们根据这些因素对GDP影响大小来制定工作的重点以更好的促进国民经济的发展,因此我们组以GDP与其他经济因素关系建立模型,想通过计量经济学的研究手段来阐述它们之间的关系,但因水平有限,中间不乏缺陷,望大家见谅。 我们把GDP的影响因素分为以下四个因素:x2 能源消费总量 x3 进出口贸易总额 x4 固定资产投资 x5 货币供应量 随机扰动项。 数据如下: obs Y X2 X3 X4 X5 1991 21662.50 103783.0 7225.800 5594.500 19349.90 1992 26651.90 109170.0 9119.600 8080.100 25402.20 1993 34560.50 115993.0 11271.00 13072.30 34879.80 1994 46670.00 122737.0 20381.90 17042.10 46923.50 1995 57494.90 131176.0 23499.90 20019.30 60750.50 1996 66850.50 138948.0 24133.80 22913.50 76094.90 1997 73142.70 137798.0 26967.20 24941.10 90995.30 1998 76967.20 132214.0 26849.70 28406.20 104498.5 1999 80579.40 130779.0 29896.20 29854.70 119897.9 2000 88254.00 130297.0 39273.20 32917.70 134610.3 2001 95727.90 134914.8 42183.60 37213.49 158301.9 2002 103553.6 148000.0 51378.20 43499.91 185007.0 一、建立模型: 根据GDP的定义,GDP=消费+投资+净出口,而x2,x3 ,x4,x5与消费,投资及净出口有着一定的线性相关关系,基于数据的有限和操作的方便,我们把模型设成以下形式:
参数估计: Dependent Variable: Y Method: Least Squares Date: 05/08/04 Time: 18:17 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X5 0.096079 0.224342 0.428270 0.6813 X4 1.972191 1.257707 1.568085 0.1608 X3 -0.346822 0.530434 -0.653845 0.5341 X2 0.318439 0.295800 1.076533 0.3174 C -22452.30 27984.60 -0.802309 0.4488 R-squared 0.985639 Mean dependent var 64342.93 Adjusted R-squared 0.977432 S.D. dependent var 27118.27 S.E. of regression 4073.867 Akaike info criterion 19.75691 Sum squared resid 1.16E+08 Schwarz criterion 19.95895 Log likelihood -113.5415 F-statistic 120.1049 Durbin-Watson stat 1.264884 Prob(F-statistic) 0.000002
将上述回归结果整理如下: 0.985639 0.977432 F=120.1049 从回归结果看,可决系数很高,F值很大,但在显著性水平下,各项的回归系数都不显著,因此回归方程不能投入使用;该模型很可能存在多重共线性。和F值大反映了模型中各解释变量联合对Y的影响力显著,而t值小于临界值恰好反映了由于解释变量共线性的作用,使得不能分解出各个解释变量对Y独立影响。
二、多重共线性的检验 用Eviews计算解释变量之间的简单相关系数: Y X5 X4 X3 X2 Y 1.000000 0.973852 0.990785 0.968615 0.897252 X5 0.973852 1.000000 0.987899 0.979698 0.814824 X4 0.990785 0.987899 1.000000 0.983539 0.879404 X3 0.968615 0.979698 0.983539 1.000000 0.853171 X2 0.897252 0.814824 0.879404 0.853171 1.000000
由上表可以看出,解释变量之间存在高度的线性相关,同时也证明了,虽然整体上拟合较好,但不能分解出各个解释变量对Y独立影响。 三、模型修正 运用OLS方法逐一求Y对各个解释变量的回归,结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。Eviews过程如下: Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 20:48 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X2 1.892978 0.294565 6.426347 0.0001 C -177928.3 37873.57 -4.697954 0.0008 R-squared 0.805060 Mean dependent var 64342.93 Adjusted R-squared 0.785566 S.D. dependent var 27118.27 S.E. of regression 12557.65 Akaike info criterion 21.86506 Sum squared resid 1.58E+09 Schwarz criterion 21.94588 Log likelihood -129.1904 F-statistic 41.29793 Durbin-Watson stat 0.500518 Prob(F-statistic) 0.000076
Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 20:50 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X3 1.950644 0.158296 12.32279 0.0000 C 13596.91 4596.028 2.958406 0.0143 R-squared 0.938215 Mean dependent var 64342.93 Adjusted R-squared 0.932036 S.D. dependent var 27118.27 S.E. of regression 7069.689 Akaike info criterion 20.71603 Sum squared resid 5.00E+08 Schwarz criterion 20.79685 Log likelihood -122.2962 F-statistic 151.8512 Durbin-Watson stat 0.753355 Prob(F-statistic) 0.000000
Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 20:50 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X4 2.328702 0.100669 23.13220 0.0000 C 9316.680 2625.880 3.548022 0.0053 R-squared 0.981655 Mean dependent var 64342.93 Adjusted R-squared 0.979820 S.D. dependent var 27118.27 S.E. of regression 3852.305 Akaike info criterion 19.50174 Sum squared resid 1.48E+08 Schwarz criterion 19.58256 Log likelihood -115.0105 F-statistic 535.0988 Durbin-Watson stat 0.797211 Prob(F-statistic) 0.000000
Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 20:50 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X5 0.490803 0.036207 13.55559 0.0000 C 21123.16 3693.877 5.718426 0.0002 R-squared 0.948388 Mean dependent var 64342.93 Adjusted R-squared 0.943227 S.D. dependent var 27118.27 S.E. of regression 6461.494 Akaike info criterion 20.53612 Sum squared resid 4.18E+08 Schwarz criterion 20.61694 Log likelihood -121.2167 F-statistic 183.7540 Durbin-Watson stat 0.341465 Prob(F-statistic) 0.000000
从上述结果可以看出Y对X4的线性关系强,拟合程度好,即 逐步回归,将其余解释变量逐一代入上式
Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 20:59 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X2 0.241568 0.183157 1.318910 0.2198 X4 2.092039 0.204046 10.25279 0.0000 C -16007.96 19367.66 -0.826531 0.4299 R-squared 0.984626 Mean dependent var 64342.93 Adjusted R-squared 0.981210 S.D. dependent var 27118.27 S.E. of regression 3717.305 Akaike info criterion 19.49170 Sum squared resid 1.24E+08 Schwarz criterion 19.61293 Log likelihood -113.9502 F-statistic 288.2051 Durbin-Watson stat 1.001296 Prob(F-statistic) 0.000000
Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 21:08 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X3 -0.361505 0.488539 -0.739972 0.4782 X4 2.743670 0.570174 4.811989 0.0010 C 8915.734 2741.457 3.252188 0.0100 R-squared 0.982707 Mean dependent var 64342.93 Adjusted R-squared 0.978864 S.D. dependent var 27118.27 S.E. of regression 3942.525 Akaike info criterion 19.60935 Sum squared resid 1.40E+08 Schwarz criterion 19.73058 Log likelihood -114.6561 F-statistic 255.7182 Durbin-Watson stat 1.108596 Prob(F-statistic) 0.000000
Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 21:08 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X4 2.805894 0.664973 4.219560 0.0022 X5 -0.103576 0.142588 -0.726401 0.4861 C 7161.682 4004.780 1.788283 0.1074 R-squared 0.982671 Mean dependent var 64342.93 Adjusted R-squared 0.978820 S.D. dependent var 27118.27 S.E. of regression 3946.641 Akaike info criterion 19.61144 Sum squared resid 1.40E+08 Schwarz criterion 19.73266 Log likelihood -114.6686 F-statistic 255.1758 Durbin-Watson stat 0.976364 Prob(F-statistic) 0.000000
再次依据调整后的可决系数最大原则,选取调整后可决系数最大所对应的解释变量作为新进入模型的候选变量,将这个候选变量的调整后可决系数与上一步中进入模型解释变量的调整后可决系数加以比较,若是大于上一步的调整后可决系数,则将候选变量加入模型,若是小于,则将停止逐步回归。经查X2的调整后可决系数最大,故X2作为第二个解释变量进入回归模型。 继续逐步回归 Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 21:26 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X2 0.226147 0.192008 1.177802 0.2727 X4 2.432888 0.617506 3.939862 0.0043 X3 -0.283774 0.482888 -0.587660 0.5730 C -14706.01 20234.62 -0.726775 0.4881 R-squared 0.985262 Mean dependent var 64342.93 Adjusted R-squared 0.979736 S.D. dependent var 27118.27 S.E. of regression 3860.355 Akaike info criterion 19.61611 Sum squared resid 1.19E+08 Schwarz criterion 19.77774 Log likelihood -113.6966 F-statistic 178.2759 Durbin-Watson stat 1.244459 Prob(F-statistic) 0.000000
Dependent Variable: Y Method: Least Squares Date: 05/07/04 Time: 21:26 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X2 0.296729 0.283219 1.047702 0.3254 X4 1.782907 1.179330 1.511796 0.1690 X5 0.055368 0.207674 0.266613 0.7965 C -20638.70 26831.94 -0.769184 0.4639 R-squared 0.984762 Mean dependent var 64342.93 Adjusted R-squared 0.979047 S.D. dependent var 27118.27 S.E. of regression 3925.397 Akaike info criterion 19.64952 Sum squared resid 1.23E+08 Schwarz criterion 19.81116 Log likelihood -113.8971 F-statistic 172.3294 Durbin-Watson stat 0.977236 Prob(F-statistic) 0.000000
由于,此次调整后可决系数最大的为X3,但与上一步的调整后可决系数相比要小,故可以认为逐步回归终止。 所以修正后的最终的回归模型为: 四、异方差检验 1、利用ARCH检验法检验模型是否存在异方差 ARCH Test: F-statistic 0.163061 Probability 0.943889 Obs*R-squared 1.428695 Probability 0.839193 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/08/04 Time: 18:56 Sample(adjusted): 1995 2002 Included observations: 8 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 8533293. 23787619 0.358728 0.7436 RESID^2(-1) -0.348786 1.243214 -0.280552 0.7973 RESID^2(-2) 0.505034 1.113640 0.453498 0.6810 RESID^2(-3) -0.031516 1.296584 -0.024307 0.9821 RESID^2(-4) 0.035635 1.168900 0.030486 0.9776 R-squared 0.178587 Mean dependent var 10929249 Adjusted R-squared -0.916631 S.D. dependent var 16868099 S.E. of regression 23352607 Akaike info criterion 37.03949 Sum squared resid 1.64E+15 Schwarz criterion 37.08914 Log likelihood -143.1579 F-statistic 0.163061 Durbin-Watson stat 1.277697 Prob(F-statistic) 0.943889 由上述分析可知Obs*R-squared=1.428695,t值均不显著,说明不存在异方差。 为了更有把握地认为修正后的模型不存在异方差,我们再使用Glejser检验来辅助判断。 2、Glejser检验: 根据样本数据建立回归模型并求残差序列 用残差绝对值对进行回归,假设函数形式为: 用Eviews分别对进行回归 Dependent Variable: SER01 Method: Least Squares Date: 05/11/04 Time: 16:00 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X2 0.057387 0.055885 1.026879 0.3287 C -4542.327 7185.410 -0.632160 0.5415 R-squared 0.095389 Mean dependent var 2802.343 Adjusted R-squared 0.004928 S.D. dependent var 2388.342 S.E. of regression 2382.449 Akaike info criterion 18.54066 Sum squared resid 56760649 Schwarz criterion 18.62148 Log likelihood -109.2439 F-statistic 1.054480 Durbin-Watson stat 1.721401 Prob(F-statistic) 0.328676 Dependent Variable: SER01 Method: Least Squares Date: 05/11/04 Time: 16:09 Sample: 1991 2002 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X4 0.109868 0.055478 1.980389 0.0758 C 206.2171 1447.095 0.142504 0.8895 R-squared 0.281709 Mean dependent var 2802.343 Adjusted R-squared 0.209880 S.D. dependent var 2388.342 S.E. of regression 2122.966 Akaike info criterion 18.31003 Sum squared resid 45069827 Schwarz criterion 18.39085 Log likelihood -107.8602 F-statistic 3.921941 Durbin-Watson stat 2.109131 Prob(F-statistic) 0.075824 从上述两表的、t、F值可以认为:修正后的模型不存在异方差。 经济意义检验:由模型可知, GDP变化与能源消费总量及固定资产投资有关,而这与相关的经济理论并没有向悖,因此此模型具有一定经济意义。 五、模型预测: 1、内插预测
2、外推预测
六、存在的问题 在论文的分析中,力求思路清晰,但掌握的软件技能不足以满足分析过程的需要,所以在论文中有重复使用某种操作的现象。 由于收集的数据不满足大样本条件,所以在异方差检验时,不能取White检验,而且在使用Glejser检验时,不能准确认定与残差绝对值符合的函数形式,所以对通过Glejser检验得出的结论把握性不强。 在模型预测时,由于样本选取的是小样本,仅为年度数据,不包括月度数据,所以我们认为有必要进行内插预测,以备对月度数据进行拟合;另外,在外推预测时,2003年数据的选取难免有误,所以预测的精度不高。