2.施密特-卡塞格林望远镜的设计 2.1. 施密特—卡塞格林望眼镜介绍 施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。 施-卡望远镜的设计是以伯恩哈德·施密特的施密特摄星仪为基础:使用球面镜做主镜(沿袭施密特摄星仪的设计)以施密特修正板来改正球面像差 承袭卡塞格林的设计,以凸面镜做次镜,将光线反射穿过主镜中心的孔洞,汇聚在主镜后方的焦平面上(有些设计会在焦平面的附近增加其他的光学元件,例如平场镜)。 施密特-卡塞格林在制造商提供给消费者的望远镜上非常普遍,因为球面的光学表面不仅比长焦距的折射式望远镜容易制做。虽然这类望远镜比同口径的反射式望远镜价格要更昂贵,但是由于紧密的光学设计使它在依订设计的口径之内很容易携带,使它在严谨细致的天文爱好者中更受青睐,已经成为目前主流的业余高端天象观测仪器。高的焦比意味着它不同于前身的施密特摄星仪,不是一架广角的望远镜,但是它狭窄的视野很适合观测行星和深空天体。
美国制Celestron星特朗C9.25施密特-卡塞格林式望远镜它有许多的变形(双球面镜、双非球面镜、或球面镜与非球面镜各一),可以被区分为两种主要的设计形式:紧密的和非紧密的。在紧密的设计中,修正板靠近或就在主镜的焦点上;非紧密的修正板则靠近或就在主镜的曲率中心上(焦距的两倍距离)。紧密设计的典型例子就是Celestron和Meade的产品,结合一个坚固的主镜和小而曲率大的次镜。这样虽然牺牲了视野的广度,但可以让镜筒缩成很短。多数紧密设计的Celestron和Meade的主镜焦比是f/2,而次镜是负f/5,产生的系统焦比是f/10。须要提出的例外是Celestron的C-9.25,主镜的焦比是f/2.3,次镜的焦比是f/4.3,结果是镜筒比一般紧密型的要长,而视野比较平坦。 非紧密的设计让修正板靠近或就在主镜的曲率中心上,一种非常好的施密特-卡塞格林设计例子是同心,就是让所有镜面的曲率中心都在一个点上:主镜的曲率中心。在光学上,非紧密型的设计比紧密形的能产生较好的平场和变型的修正,但镜筒在长度上却有所增加。 在施密特-卡塞格伦系统,光通过薄的非球面校正透镜进入镜筒,然后接触球面主镜。 被球面主镜反射的光线折回镜筒开口中部的第二反射镜,然后再次被第二反射镜反射,光线通过镜筒内部中间的管子聚集在目镜形成图象。
2.2带有非球面矫正器的施密特—卡塞格林系统的设计 这个设计是要在可见光谱中使用。我们要一个10inches的aperture和10inches的back focus。开始设计之初,先把primary corrector System, General, 在aperture value中键入10,同在一个screen把unit”Millimeters”改为”Inches”
再来把Wavelength设为3个,分别为0.486,0.587,0.656,0.587定为primary wavelength。你可以在wavelength的screen中按底部的”select”键,即可完成所有动作
目前我们将使用default的field angle value,其值为0。依序键入如Zemax P.33页的starting prescription for schmidt cassegrain的LDE表,此时the primary corrector为MIRROR球镜片。你可以叫出2D layout,呈现出如下图所示 现在我们在加入第二个corrector,并且决定imagine plane的位置。键入如Zemax P.33 Intermediate prescription for schmide cassegram的LDE,注意到primary corrector的thickness变为-18,比原先的-30小,这是因为要放second corrector并考虑到其size大小的因素。在surface4的radius设定为variable,透过optimization, Zemax可以定下他的值。先看看他的layout,应如下图所示。/ m4 a8 o" y9 j/ R# @1 ^2 }- H
叫出merit function, reset后,改变”Rings” option到5。The rings option决定光线的sampl
首页 上一页 1 2 3 下一页 尾页 2/3/3