图 2.4 N点基2 FFT的M级迭代过程 经过FFT变换结果,就可以计算出各次谐波的振幅和相角,从而建立轧辊的偏心模型,其振幅A=,相角,频率随轧辊速度变化而变化。 偏心模型还必须转换为与采集脉冲对应的离散点的模型,即将带有三个参数的正弦波偏心模型转换成128个脉冲对应的离散点模型。轧辊偏心控制对检测和控制系统的准确性和快速性要求很高,定位定点采样保证了通过数据处理获得的偏心模型的唯一性和准确性。把正弦波的一个周期分成N段,列成表格,用步长DELTA扫过这个表,用序号作为角度参数,查表求出序列的值。假设每两个采样点之间的时间间隔维t,则正弦频率为。当步长不是整数时,采用点可能落在两表值之间,可以采用线性内插法加以修正。 ⑶ 基2时域FFT算法的改进(MMFFT) 针对轧辊偏心信号本身及其控制问题的特点,对传统的基2时域FFT算法进行改进(MMFFT)。改进分两部,第一步改进的是取消传统FFT方法对采样持续时间的限制,使快速付立叶变换算法适用于处理轧辊偏心波动这类周期未知或变动的周期信号,同时又能抑制FFT固有的泄漏效应。第二步改进是就偏心控制问题而言,将周期信号中各次正弦波的绝对频率转换为相对频率,从而提高算法在偏心控制中应用的可靠性和实用性。 ① 第一步改进(Modlified FFT) 人们对DFT感兴趣主要是因为它是连续付立叶变换的一个近似。近似的准确程度严格说来是被分析波形的一个函数,两个变换之间的差异是因DFT需要对连续时间信号取样和截断而产生的。因而在应用DFT解决实际问题时,常常遇到混叠效应、栅栏效应和泄漏效应等问题。 对一个连续信号x(t)进行数字处理时,要在计算机上进行计算,而计算机的输入只允许是数字信号,所以必须对连续信号x(t)进行抽样,即 (2.34) 式中:为对x(t)抽样所形成的序列。T为抽样间隔,为抽样率,。如果抽样率选得过高,即抽样间隔过小,则一定的时间里抽样点数过多,造成对计算机存贮量的需要过大和计算时间太长。但如果抽样率过低,则在DFT运算中将在频域出现混叠现象,形成频谱失真,使之不能反映原理的信号。这样将使进一步的数字处理失去依据,而且也不能从这个失真的频谱中恢复出信号来。因此,对连续信号的抽样率需大于奈奎斯特频率,即抽样率至少应等于或大于信号所含有的最高频率的两倍,即。 如果x(t)是一个周期信号,它只具有离散频谱,那么,x(t)抽样后进行FFT运算得出的频谱就是它的离散频谱。但是如果x(t)是个非周期函数,它的频谱是连续的,把x(t)的抽样进行DFT运算得到的结果就只能是连续频谱上的若干点。因为这就好象是从栅栏的一边通过缝隙观看另一边的景象一样,所以称这种效应为栅栏效应。如果不附加任何特殊处理,则在两个离散的变换线之间若有一特别大的频谱分量,将无法检测出来。减少栅栏效应的一个方法就是在原记录末端填加一些零值变动时间周期内的点数,并保持记录不变。这实质上是人为地改变了周期,从而在保持原有线连续形式不变的情况下,变更了谱线的位置。这样,原来看不到的频谱分量就能够移动到可见的位置上。 泄漏效应是由于在时域中对信号进行截断而引起的。实际问题中,所遇到的离散时间序列x(nT)可能是非时限的,而处理这个序时时,需要将其限制为有限的N点,即将它截断。这就相当于将序列乘以一个矩形窗口,如果对有限带宽的周期函数抽样后的截断长度并不正好是其周期的整数倍,就会导致离散付立叶变换和连续付立叶变换之间出现显著的差异。这是因为,根据频域卷积定理,时域中的,则频域中与进行卷积。这里,和分别是的付立叶变换,这样将使截断后的频谱不同于它加窗以前的频谱。泄漏效应的产生是由于矩形窗函数的付立叶变换中具有旁瓣亦有一定带宽而引起的。如图2.5所示。为了减少泄漏,应尽量寻找频谱中窗函数,即旁瓣小、主瓣窄的窗函数。或者通过限制采样的持续时间来抑制泄漏效应。 图2.5 矩形窗口的时域与频域图形 对于待分析信号,由于时域中的截断是必须的,所以泄漏效应是离散付立叶变换所固有的。在实际问题中,由于待分析信号的周期往往是未知的或变化的,因而通过对采样持续时间的限制而求得正确结果,往往是十分困难的。轧制过程中的轧辊偏心信号就是如此。这了解决这一问题,采用内插计算法修正FFT的计算结果,使之更适合于一般的场合。 考虑一周期复函数,在每一为采样持续时间,N为采样个数)时采样,得到抽样函数。 (2.35) 式中:….,N~1) 通过传统FFT的计算,可以得到对应于以为间隔频率的离散付立叶变换的结果,即 () (2.36) 一般说来,这些的值并不能准确地代表中各周期分量的幅值和频率的复数值。 将(2.35)代入式(2.36)并整理可得: (2.37) 从式(2.37)中并不能看出之间的直接关系。但是,当采样的持续时间为信号周期的整数倍时,即时,则有 (2.38) 这里,假设是一个很小的数。 如果忽略式(2.38)中带有的项,则有。只有在上述情况下,近似地得到之间的关系。通常情况下,采样的持续时间不是信号周期的整数倍,为此引入一个参数,使得信号的频率可以用下式表示: (2.39) 此时对应于频谱中的,当,可由式(2.38)得出 (2.40) 当忽略了式(2.40)中带有的项时,有 (2.41) 同理,对于相邻两点有: (2.42) (2.43) 设 (2.44) 则由式(2.41)、式(2.42)、式(2.43)和式(2.44)可得: (2.45) 式中Zk定义为: (2.46) 从式(2.46)中Zk的实部和虚部的值,可以确定的值,从而可以确定复频率: (2.47) 又由式(2.46)可得: (2.48) 最后,根据式(2.41)、式(2.42)和式(2.43)可得出当采样的持续时间不是信号周期的整数倍时,周期分量的复振幅为: (2.49) ② 第二步改进(Modified MFFT) 如前所述,经过第一步改进后的快速付立叶变换算法用 (2.50) 确定第k次谐波的角频率,0<<1,T为采样持续时间,是周期分量的绝对频率。然而,就偏心控制问题而言,轧辊偏心信号的绝对频率是随着轧制速度的改变而变化的。在速度变化较大或速度变化频繁时,再以绝对频率做为偏心模型参数,不仅不方便,而且会影响信号处理结果和控制结果的准确性和可靠性。考虑借助于某种仪表,把支持辊每转一周的采样点数固定,将绝对频率的计算转换为信号相对于支持辊转速的相对频率的计算。 假设信号采样周期为,总的采样点数为,那么总的采样持续时间可表示为: (2.51) 又假设支持辊每转一周,固定的采样点数为,那么轧辊转动的角频率可以表示为: (2.52) 由上两式就可以得出偏心信号与支持辊之间的相对频率 (2.53) 利用式(2.53)计算的频率值作为轧辊偏心模型参数之一,不仅使信号检测过程更方便,信号处理结果更可靠。而且更有利于控制方案的制订和实施。 MMFFT算法流程图如图2.6所示。 应用MMFFT方法的偏心控制方案 如前上述,在轧机运转过程中,支持辊偏心反映在辊缝、轧制压力和带钢厚度上,是一复杂的高频周期波,其变化幅度取决于轧辊偏心量的大小,其变化频率与轧机的主机速度成正比,即此偏心信号的变化周期是随轧速度的变化而变化的。为此,采用改进的快速付立叶变换算法(MMFFT)来检测此偏心信号,获得信号中所含各次正弦波的幅值、频率和相角,建立偏心模型,进而实施控制。 基于以上分析,采用预先模型识别与在线参数自动修正相结合的方法,实现偏心模型的检测与偏心影响的在线补偿。 ⑴ 第一种方案 首先,在轧辊预压靠时,对压力仪测出的轧制压力信号进行采样。然后,运用MMFFT对该采样信号进行运算处理,根据产品精度要求,取出一定次数的基波和谐波分量,作为支持辊偏心在轧制压力信号上的反映,通过轧制压力与辊缝的关系,得出轧辊偏心信号的原始模型,该模型即为以后控制的基础。在预压靠时取原始模型具有一些优点,如可以减少带钢的浪费,保证在正常轧制开始的同时,偏心控制器也投入也运行。此外,由于预压靠时不存在来料厚度、硬度波动和张力变化等一系列干扰因素的影响,有利于提高模型检测的精度。当然,这样做也有其自身的问题,这是因为压靠时的轧机状态、轧辊受力情况等均与正常轧制时有差异,因此,压靠时获得的偏心模型并不完全反映正常轧制状态时的实际情况。 在正常轧制开始后,应用预压靠时测取的原始模型,通过偏心控制器来调节液压推上系统。与此同时,对出口测厚仪信号进行采样及快速付立叶变换处理,从该信号中得出剩余偏心信息。该剩余信息的量值与原始偏心模型的精度及轧辊的热涨与磨损等因素
图2.6 MMFT算法流程图 有关。 由于测厚仪信号相对于轧制力信号有滞后,因此需要根据偏心信号周期,将滞后时间扣除后,才能使剩余偏心信息与原始模型相比较。当然,为了避开测厚仪滞后的影响,也可从轧制力信号中检测剩余偏心信息,然后直接与原始模型进行比较。比较的原则如下:(就基波分量而言) 假如原始偏心模型为: ) (2.54) 测得的剩余偏心信息为: ) (2.55) 修正后的偏心模型为: (2.56) 那么: 当 则 当 则 如果 则 (2.57) (2.58) 将原始偏心模型与剩余偏心信息比较后,得出幅值和相角的修正量,自动修正这两个参数,由于偏心信号幅值和相角的变化一般是由轧辊的热膨胀和磨损引起的,其变化比较缓慢,因而采用上述修正方法是有效的。而偏心信号频率采用的是相对频率,与实际轧制速度的改变无关,从而使修正过程简化。偏心控制系统框图如图2.7所示。图中,偏心控制器完成从偏心模型向液压推动系统控制信号的转换,在线参数自动修正部分完成原始偏心模型与剩余偏心信息的比较、修正量的计算及参数的自修正。
图2.7 偏心控制系统框图(预压靠建模)首页 上一页 1 2 3 4 5 6 7 下一页 尾页 2/12/12 相关论文
首页 上一页 1 2 3 4 5 6 7 下一页 尾页 2/12/12