经过2.2.1.1和2.2.1.2小节,所有的大数运算功能都准备完毕,在此基础上,本工程将寻找素数的功能置于类Prime_factory_san之中。外部只要调用本类实例的成员vlong find_prime( vlong & start )就可以以大数start为起点,得到一个数,这个数是素数的概率很大。下面介绍寻找素数的原理。
首先在需要寻找素数的整数范围内对整数进行筛选,把所有确知为合数的整数排除出去。程序中构造了一个数组b[],大小为一轮素数搜索的范围,记搜索范围大小为SS。b[0]到b[SS]分别对应大数start到start+SS。b[]中所有元素先初始化为1,如果对应的大数确定为合数,就将b[]中对应的元素置为0。最后,只需对那些b[]中为1的元素对应的大数进行比较确切的素数测试即可,只要被测试的数是素数概率达到一定门限,就判这个数为素数。这样做既保证了这段程序可以在短时间内执行完,又保证了可以以比较高的准确度得到素数。
函数find_prime先把b[]的所有元素赋值为1,然后按参数start给标记数组b[]的各元素赋0值。下面描述标记数组b[]的赋0值算法。首先,在类Prime_factory_san被构造的时候,构造函数中从2开始搜寻一些小素数,记录在数组pl[]中,共记录NP个。这些小素数用来当作因子,他们的倍数将被从大素数搜索范围内剔除(即把数组b[]的对应元素标记为0),剔除的程序代码如下。
for (i=0;i<np;i++)
{
unsigned p = pl[i];
unsigned r = start % vlong(p);
if (r) r = p - r;
while ( r < SS )
{
b[r] = 0;
r += p;
}
}
这里利用start对各小素数因子p求模的办法,得到当前p在素数搜索范围内的最小倍数在b[]中的对应位置,将其剔除后,不断后移p个位置,将这个小素数因子p在搜索范围内的所有倍数全部剔除,如图2-5所示。在完成对所有小素数因子的类似操作后,他们的倍数在搜索范围内的位置标记b[r]被全部标记为0。实际上这就是Eratosthenes筛选法。
图2-6 函数find_prime寻找素数的流程框图
得到了大素数,即RSA算法中的p、q,我们就可以计算出密钥,进行加密等操作了。
4. 二元一次不定方程
在RSA 算法中,往往要在已知A、M的情况下,求B的最小值,使得 (AB) mod M = 1。即相当于求解B、N都是未知数的二元一次不定方程 AB-MN=1的最小整数解。
而针对不定方程ax-by=1 的最小整数解,古今中外都进行过详尽的研究,西方有著名的欧几里德算法,即一种辗转相除法,中国有秦九韶的“大衍求一术”。欧几里德算法是一种递归算法,较容易理解。下面举例说明用欧几里德算法求解二元一次不定方程的最小整数解。
给定不定方程11x-49y=1,求最小的x
(1) 11 x - 49 y = 1 49 mod 11 = 5
(2) 11 x - 5 y = 1 11 mod 5 = 1
(3) x - 5 y = 1 5 mod 1 = 0
逆向代入:
令y=0 代入(3)得x=1
令x=1 代入(2)得y=2
令y=2 代入(1)得x=9
x=9;y=2即为所求。
程序中,全局函数vlong modinv( const vlong &a, const vlong &m )用来完成这种算法。对应前面的叙述,参数a对应A,参数m对应M,函数返回值即为B的最小值。
5. 按常规RSA算法实现加密与解密
最后,类RSA_san基于前面的准备工作,实现RSA密钥生成和加解密的功能(算法在此不再赘述,RSA算法协议见http://www.di-mgt.com.au/rsa_alg.html)。为了方便阅读,整个类的源程序中,所使用的变量字母均和RSA算法协议中一致。在类RSA_san的构造函数里,执行准备一对随机密钥的操作。之后可以直接使用类的其他成员进行RSA加解密操作,也可以载入以前保存的密钥或再次随机生成密钥。类中各成员频繁的用到字符串和vlong类型的转换,因为大数是用字符串置入的,而把大数读出,也是保存在字符指针指向的一段内存空间里,所以也是字符串。所以,需要实现一系列的编码转换函数,比如将unsigned指针指向的一段空间里保存的一个大数,表示成十六进制形式的字符串文本。编码转换通常是用C风格的指针操作和sprintf函数来完成。
需要加密和解密的数据也是通过字符串参数置入的。由于字符串的结尾字符“\0”实际上也可能是需要加密的数据,所以置入的串长度并不能以“\0”来决定,程序里引入一个unsigned类型的参数来决定置入的串长度,这样就解决了加密连0数据时候被截断的问题。
因为是对文件加密的软件,需要加密的数据通常并不止几字节,这时由上层程序将数据按用户的设置分块,分别加密或解密。本软件默认的分块大小是1字节,即逐个字节作为参数,调用C++核心模块中的方法。
加密解密流程均为标准RSA算法,具体过程和使用方法参见源程序和接口文档。
6. 核心类库综述
综上几小节所述,实现RSA加密算法的C++核心类库由六个类组成,类名和对应的功能描述总结如表2-1所示。各个类之间的关系如图2-7所示。
表2-1 RSA加密算法的C++类库中的类
class flex_unit 大数运算和存储最基本的类,主要实现超大整数的存储和索引管理。
class vlong_value 是flex_unit的派生类,在灵活大数存储的基础上实现四则运算函数。
class vlong 以vlong_value为基础(将一个vlong_value指针作成员),重载运算符。
class monty 为RSA准备大数求幂模运算的函数,vlong的友元。
class Prime_factory_san 素数工厂,寻找大素数的类。
class RSA_san 在前5个类的基础上,实现RSA核心算法的类。