中国银行界开始进行银行卡业务并没有太长的时间,但是银行卡业务的发展在整个银行体系中有着十分重要的作用,鉴于此,我们决定分析一下是哪些因素在影响银行卡业务的交易额。 为了找出影响银行卡交易额的因素,我们选择了工商银行,农业银行,中国银行,建设银行,招商银行六家银行的数据(中国金融年鉴1996——2000)。 设模型为Y=β1+β2X1+β3X2+β4X3+β5X4+β6X5+β7X6 其中, Y ——银行卡业务交易额(万元) X1——发卡机构(个) X2——发卡量 (张) X3——特约商户(个) X4——取现网点(个) X5——ATM机 (台) X6——POS机 (台) 表1 obs Y X1 X2 X3 X4 X5 X6 1 40270900 290 19221730 69453 24503 3565 30792 2 13150000 346 4613873 54263 35513 1020 21248 3 28890000 495 4710000 53044 11820 1934 16595 4 20505000 502 10875900 46600 21700 2687 16165 5 679600 48 348814 9627 1456 97 2407 6 2000 10 465256 353 126 80 479 7 56150000 308 30088814 81490 27620 5499 46570 8 30428000 387 8839037 71591 40522 4752 38149 9 27150000 446 8094456 61841 12847 2454 7178 10 14463200 305 20658300 49774 23110 4045 30248 11 271200 59 1095261 12204 2051 295 6219 12 6400 13 1546589 990 146 138 2412 13 76918000 307 43885083 89595 28988 6917 56318 14 4755000 340 14986461 81956 42739 3336 49610 15 25110000 330 12772511 68182 13965 2859 26894 16 22670500 303 31097993 45491 21179 4569 30063 17 539500 65 3258186 15898 2720 708 9141 18 19600 14 3378891 35.96 163 255 2689 19 80770000 300 54837747 97529 29519 8283 56834 20 67313410 325 22125836 85758 42250 3572 50782 21 26731900 163 17748218 71871 13930 3206 38663 22 28561800 296 49247112 49319 24779 5717 39503 23 4595600.37 76 6923933 19970 2783 1115 12752 24 23787000 13 6426048 6399 183 436 14006
首先用OLS进行模型估计 表2 Dependent Variable: Y Method: Least Squares Date: 12/12/03 Time: 23:02 Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C -3680754. 6063061. -0.607079 0.5518 X1 -15105.42 43742.79 -0.345324 0.7341 X2 0.500183 0.631789 0.791693 0.4394 X3 588.1427 357.5213 1.645056 0.1183 X4 -416.5884 538.2219 -0.774009 0.4496 X5 1143.492 5413.374 0.211235 0.8352 X6 12.18085 764.4984 0.015933 0.9875 R-squared 0.760328 Mean dependent var 24739109 Adjusted R-squared 0.675738 S.D. dependent var 24354861 S.E. of regression 13868623 Akaike info criterion 35.96665 Sum squared resid 3.27E+15 Schwarz criterion 36.31025 Log likelihood -424.5998 F-statistic 8.988400 Durbin-Watson stat 1.811537 Prob(F-statistic) 0.000164 由上表可以看出,模型拟合还好,但是T检验都不显著,并且有些系数还出现了与经济意义相背离的现象。说明所选模型存在问题,必须进行修正。
检验是否有多重共线性。 表3 X1 X2 X3 X4 X5 X6 X1 1 0.36897397 0.75838921 0.71738000 0.57950382 0.51270456 X2 0.36897397 1 0.66264998 0.53652153 0.92453842 0.81155867 X3 0.75838921 0.66264998 1 0.84873205 0.83473134 0.89361429 X4 0.71738000 0.53652153 0.84873205 1 0.70332682 0.83280296 X5 0.57950382 0.92453842 0.83473134 0.70332682 1 0.89090771 X6 0.51270456 0.81155867 0.89361429 0.83280296 0.89090771 1 可以看出除X1与X2的相关性较小,其余解释变量之间存在相关关系较大。
选出X1,X2,X3 ,X4,X5,X6中对Y影响较显著的X3进行辅助回归。
表4 Dependent Variable: X3 Method: Least Squares Date: 12/13/03 Time: 01:24 Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C -2125.979 3965.646 -0.536099 0.5985 X1 81.80702 21.44395 3.814924 0.0013 X2 -0.000680 0.000384 -1.770303 0.0936 X4 -0.386730 0.342924 -1.127742 0.2742 X5 3.226370 3.486901 0.925283 0.3671 X6 1.531447 0.351752 4.353774 0.0004 R-squared 0.935210 Mean dependent var 47634.75 Adjusted R-squared 0.917213 S.D. dependent var 31777.10 S.E. of regression 9143.135 Akaike info criterion 21.29171 Sum squared resid 1.50E+09 Schwarz criterion 21.58623 Log likelihood -249.5005 F-statistic 51.96433 Durbin-Watson stat 2.338614 Prob(F-statistic) 0.000000 因为F=(O.935210/(6-1))/((1-0.93521O)/(24-6))=51.96413,而查表F0.05(5,18)=2.77,51.96413显著大于2.77,所以可判断模型存在多重共线性。
首先用Y对X3进行单独回归。 表5 Dependent Variable: Y Method: Least Squares Date: 12/13/03 Time: 01:20 Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C -4253338. 5649935. -0.752812 0.4595 X3 608.6407 99.30861 6.128781 0.0000 R-squared 0.630637 Mean dependent var 24739109 Adjusted R-squared 0.613847 S.D. dependent var 24354861 S.E. of regression 15134396 Akaike info criterion 35.98249 Sum squared resid 5.04E+15 Schwarz criterion 36.08066 Log likelihood -429.7899 F-statistic 37.56196 Durbin-Watson stat 1.971714 Prob(F-statistic) 0.000004 可以看出X3单独对Y 的影响显著。
用Y 对X2 X3进行回归 表6 Dependent Variable: Y Method: Least Squares Date: 12/13/03 Time: 01:21 Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C -4298503. 4882566. -0.880378 0.3886 X2 0.672145 0.231102 2.908433 0.0084 X3 387.7936 114.5905 3.384169 0.0028 R-squared 0.736697 Mean dependent var 24739109 Adjusted R-squared 0.711621 S.D. dependent var 24354861 S.E. of regression 13078790 Akaike info criterion 35.72735 Sum squared resid 3.59E+15 Schwarz criterion 35.87461 Log likelihood -425.7282 F-statistic 29.37806 Durbin-Watson stat 1.909223 Prob(F-statistic) 0.000001 X2,X3联合对Y 的影响比X2,X3单独对Y 的影响大。
加入X1进行OLS,得 表7 Dependent Variable: Y Method: Least Squares Date: 12/13/03 Time: 01:22 Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C -3159302. 5160254. -0.612238 0.5473 X1 -20483.42 27193.55 -0.753245 0.4601 X2 0.622104 0.242786 2.562360 0.0186 X3 483.2526 171.6617 2.815144 0.0107 R-squared 0.743961 Mean dependent var 24739109 Adjusted R-squared 0.705555 S.D. dependent var 24354861 S.E. of regression 13215626 Akaike info criterion 35.78271 Sum squared resid 3.49E+15 Schwarz criterion 35.97905 Log likelihood -425.3925 F-statistic 19.37102 Durbin-Watson stat 1.951553 Prob(F-statistic) 0.000004 拟合并没有显著变优,同时,X1的符号与经济意义相反,所以去除X1。 用同样的做法可以去除X4, X5, X6。 因此,模型为Y= —4298503+0.672145X2+387.7936x3 (式1) (4882566) (0.231102) (114.5905) t=(-0.880378) (2.908433) (3.384169) R^2=0.736697 df=21 进行异方差检验。 ARCH检验 表8 ARCH Test: F-statistic 0.162997 Probability 0.919791 Obs*R-squared 0.587160 Probability 0.899366 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 12/13/03 Time: 01:25 Sample(adjusted): 4 24 Included observations: 21 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 1.80E+14 8.59E+13 2.100225 0.0509 RESID^2(-1) -0.008367 0.246741 -0.033911 0.9733 RESID^2(-2) 0.047104 0.247960 0.189964 0.8516 RESID^2(-3) -0.172179 0.251874 -0.683592 0.5034 R-squared 0.027960 Mean dependent var 1.64E+14 Adjusted R-squared -0.143576 S.D. dependent var 2.66E+14 S.E. of regression 2.84E+14 Akaike info criterion 69.57035 Sum squared resid 1.38E+30 Schwarz criterion 69.76931 Log likelihood -726.4887 F-statistic 0.162997 Durbin-Watson stat 1.909327 Prob(F-statistic) 0.919791
WHITE检验 表9 White Heteroskedasticity Test: F-statistic 1.334828 Probability 0.293323 Obs*R-squared 5.264877 Probability 0.261183 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 12/13/03 Time: 01:26 Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 5.62E+13 1.12E+14 0.500728 0.6223 X2 21313860 15836624 1.345859 0.1942 X2^2 -0.369222 0.274141 -1.346834 0.1939 X3 -7.49E+09 7.07E+09 -1.059713 0.3026 X3^2 90907.90 71582.57 1.269972 0.2194 R-squared 0.219370 Mean dependent var 1.50E+14 Adjusted R-squared 0.055027 S.D. dependent var 2.51E+14 S.E. of regression 2.44E+14 Akaike info criterion 69.27764 Sum squared resid 1.13E+30 Schwarz criterion 69.52307 Log likelihood -826.3317 F-statistic 1.334828 Durbin-Watson stat 2.251078 Prob(F-statistic) 0.293323 由以上两种检验联合判断式1可能不会存在异方差,但是由于所用数据为截面数据,所以,也有必要进行修正。
进行修正:首先用GENR生成数据LY=logy,LX2=logx2,LX3=logx3, 数据如下:
表10 LY LX2 LX3 1 17.51114 16.77155 11.14841 2 16.39193 15.34458 10.90160 3 17.17901 15.36520 10.87888 4 16.83618 16.20206 10.74936 5 13.42926 12.76229 9.172327 6 7.600902 13.05034 5.866468 7 17.84354 17.21966 11.30824 8 17.23087 15.99469 11.17872 9 17.11689 15.90669 11.03232 10 16.48712 16.84363 10.81525 11 12.51061 13.90650 9.409519 12 8.764053 14.25156 6.897705 13 18.15825 17.59709 11.40305 14 15.37471 16.52266 11.31394 15 17.03878 16.36281 11.12994 16 16.93658 17.25265 10.72527 17 13.19840 14.99668 9.673949 18 9.883285 15.03306 3.582407 19 18.20712 17.81989 11.48791 20 18.02487 16.91226 11.35928 21 17.10137 16.69180 11.18263 22 17.16758 17.71236 10.80606 23 15.34061 15.75049 9.901986 24 16.98465 15.67587 8.763897
将以上数据用OLS得出: 表11 Dependent Variable: LY Method: Least Squares Date: 12/13/03 Time: 01:17 Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C -7.491200 2.933308 -2.553840 0.0185 LX2 0.831797 0.232705 3.574468 0.0018 LX3 0.973890 0.162871 5.979501 0.0000 R-squared 0.862135 Mean dependent var 15.51324 Adjusted R-squared 0.849005 S.D. dependent var 3.037069 S.E. of regression 1.180147 Akaike info criterion 3.285624 Sum squared resid 29.24769 Schwarz criterion 3.432880 Log likelihood -36.42748 F-statistic 65.66139 Durbin-Watson stat 1.676656 Prob(F-statistic) 0.000000
可以得出模型拟合较好,查德宾表——沃林d统计量得,d L=1.188, d U=1.546,,因为,1.1676656大于d u小与2,所以,该模型不存在自相关。 所以,可以得出:模型应该为 LY= —7.4912+0.831797LX2+0.97389LX3。 ( 2.933308 ) ( 0.232705 ) ( 0.162871) t=(-2.553840) (3.574468 ) ( 5.979501) R^2=0.862135 df=21 由所建模型来分析可以看到银行卡业务的交易额主要与发卡量总数和特约商户个数有关,至于其它因素,如发卡机构,取现网点,ATM机和POS机台数对它的影响都并不是很大。现实生活中应该也是如此,银行卡的张数直接影响着银行卡业务的交易额,因为只有拥有了银行卡,才有可能用银行卡进行消费。而一般来说,人们在进行交易时,如果是该商家是特约商户,那么会直接使用银行卡,而免去了用现金的麻烦。而现在,人们不太习惯使用银行卡直接购物;使用它进行购物时的交易额一般都会很大。而随着时间的推移,人们会越来越减少直接的现金消费,而倾向于使用银行卡直接消费。因此,银行在发展银行卡业务的时候应该着重于卡的发行以及特约商户的增加。而不应该盲目地增设ATM机,POS机,对资源作一些不必要的浪费。
报告的不足之处在于,由于银行卡业务发展时间不是很长,并不成熟,所以使用了24组混合数据。但银行卡业务交易额与它的影响因素的关系还是有迹可循。相信如果在10年以后再来做同样的分析,会得出有更好的效果。